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Introduction

Modular arithmetic is arithmetic with residues. If we make a flight of 31 
hours and we leave today at 12:00 we will be tomorrow 19:00 at our 
destination; 7 hours later than the departure time today.
We calculate this by dividing duration of the journey by 24; the number of 
hours in a day. The rest we add to the time of departure and so we arrive at 
19:00. (Here we must of course also take into account the time difference 
between the location of departure and the location of arrival).

This is a simple example of arithmetic with residues.
In number theory modular arithmetic occurs frequently. In practice it plays an
important role; in particular, with the calculation of large prime numbers 
which are used in cryptography. And cryptographic applications we use 
almost daily; usually unconsciously: for example, for online banking or credit
cards.

The calculation of residues for division by large numbers takes a lot of 
processing power of a computer, and thus a lot of time. Therefore, all kinds 
of methods have been developed to accelerate modular arithmetic with large 
numbers. One such method was developed by Peter Montgomery in 1985 and
is named Montgomery Reduction and Montgomery Multiplication[1].
In addition, there are other techniques to speed up the calculating with 
residues in certain situations. On the internet you can find lots of information 
on modular arithmetic, but this information is not always accessible; often the
information contains complex formulas or the information is not complete. In
this paper, we try to give the simplest possible explanation of the 
Montgomery multiplication and other methods used for modular arithmetic 
with huge numbers.
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Rehearsal

It is almost unavoidable to use some mathematical concepts and simple 
formulas in this document. Therefore, a small repetition of mathematical 
concepts, symbols and formulas is here included. Furthermore, a small 
introduction to the processing and storage of numbers in a binary computer is
included.

Modulus
The residue of a number a that is divided by a number m will be represented 
mathematically as follows:
a (mod m). Number m is called the modulus. The result will be preceded by 
the symbol ≡, this in contrast to the equal (=) sign at the result of a sum 
without modulus.
So the remainder r of the division a/m is: a (mod m) ≡ r. In general, in 
modular arithmetic, only natural numbers are involved; so no decimals or 
fractions. All numbers that can form a residue at a particular modulus m is 
called the modulus domain m. All integers from zero up to and including m-1 
belong to that domain. If a number falls outside this domain we can bring the 
number within the domain by subtracting the modulus one or more times. If a
number is negative, we can bring the number within the domain by adding 
the modulus one or more times.
In principle negative numbers do not belong to the domain of the modulus. 
There are some exceptions where negative numbers are used in modular 
arithmetic, such as with the NTT (Number-theoretic Transform) [2].

Powers
If a is a natural number greater than 1, then:
a0 = 1
a1 = a
a3 x a2 = a(3+2) = a5

a3 : a2 = a(3-2) = a1

The inverse of  a1 = a -1; So, this is one divided by a.
Thus, a1 x a -1 = a(1-1) = a0 = 1
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The binary computer

In the binary world of the computer, binary numbers are typically stored in 
the form of a row of bits. In the modern computer is that a row (register) of 
32 or 64 bits. This is called an integer (register) and forms the unit for 
making calculations in a computer. Each bit can have a value of 0 or 1 and 
represents a power of two: the bitnummering for a 32-bit integer is 
from 0 to 31. 
The first bit (bit 0) represents the value 20 when the bit it is set to 1, otherwise
it represents the value 0. The following bit (bit 1) represents the value 21 

when it is set to 1; otherwise the value is 0. Then follows 22, 23, 24 ... etc. until
the value 231 for bit bit 31 when it is set to 1. The total value of an integer is 
the value of all the bits added together. 
Graphically a 32-bit integer register can be viewed as a row of 32 boxes 
where box 0 is at the right side and box 31 is at the left side. Artificially we 
can make a greater integer by coupling multiple 32- or 64-bit integers 
together.
We can multiply the contents of an integer by two, by shifting the content of 
each of the bits one place to the left. What was at first the content of bit 
number 30, now goes to bit number 31; what stood at bit 29 goes to bit 30 ... 
etc. Bit number 0 gets a 0 as content. The content of what was in bit number 
31 disappears (or comes into a kind of overflow bit, also referred to as carry-
flag).
We can divide the contents of an integer by two, by shifting the content of 
each of the bits one place to the right. What was at first the content of bit 
number two, now goes to bit number one; what was on bit three goes to bit  
two ... etc. What was at bit 31 goes to bit 30, and a zero is put in bit 31 (for a 
32-bit integer). The content of bit o disappears. 
In most computers, special instructions are available for shifting the contents 
of an integer register: instruction SHR stand for Shift Right, and instruction 
SHL stands for Shift Left. 
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Special moduli

There are some formats of moduli that simplifies modulair computations. 
Especially in computerprograms it becomes simpler with such moduli[3]. 
Calculations with such moduli can also be implemented in computer 
hardware. Here are three such moduli:

mod (2n)
With mod (2n), we determine the rest of a number that we divide by a power 
of two. If this number is stored in a binary computer in the form of one or 
more coupled integers, then we can divide the contents of the integer (s) by a 
power n of two (2n) by shifting the contents of the bits n places to the the 
right. In this case, the content of n bits to the right disappears. We can see the 
bits that are shifted out (shifted to the right) as a separate integer. We can, 
then, in that separate integer register, put the bits in the right place, so that the
bit which is shifted out first, at the location of bit 0 comes, etc. Then, the 
contents of this separate integer register forms the remainder of the division 
by (the power of) two. Thus, we can quite easily determine the value of a 
number mod (2n).

mod (2n + 1)
In number theory modulair calculations with modulus (2n+1) occurs  
frequently. The modulus (2n+1) is also known as "Fermat modulus", as a 
Fermat number has the same shape: 2n+1. The difference is that with a 
Fermat number, the exponent n itself has to be a power of two, while with a  
Fermat modulus this is not a requirement.
The Fermat modulus is used in the "Strassen Schönhage Algorithm" for the 
multiplication of large numbers [4].

In calculations of numbers modulo (2n+1), the following trick can be used: 
First divide the number by (2n). We then get a quotient q and a remainder r. 
We had to divide by (2n+1); so we must reduce the remainder by q. If r then 
becomes negative, we must add the modulus (2n+1) again to the remainder r.
As we have seen in a binary computer, the division of a binary number by 
(a power n of) 2 is accomplished by means of a shift to the right over n bits. 
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The bits that remain form the quotient and the n bits that are shifted out (the 
n of the modulus) form the remainder, after the quotient is subtracted from 
the remainder [5].

mod (2n - 1)

This modulus is referred to as the Mersenne modulus, because it has the same
shape as a Mersenne number. This form of modulus is for instance used in 
the Lucas Lehmer test for Mersenne primes [6].
In the calculation of numbers modulo a Mersenne number the following trick 
can be used: First divide the number by 2n. We then get a quotient q and a 
remainder r. We had to divide by (2n-1); so we divided by a number too large.
As a result, the remainder becomes too small. We correct that by increasing 
the remainder r with quotient q. When the remainder r then is greater than the
modulus, we have to subtract the modulus from the remainder r. 
The division by 2n is accomplished by means of a shift to the right by n bits. 
The bits that remain form the quotient q and the n bits that are shifted out (the
n of the modulus) form  the remainder r. We must now add the quotient q to 
the remainder r, and check whether the result is greater than the modulus. If 
the result is greater than the modulus we reduce the remainder r by the 
modulus.
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Montgomery multiplication
  
The principle of the Montgomery multiplication is to carry out 
simultaneously the modulus operation with the multiplication. So the 
multiplication of number a by number b, followed by the mod operation mod
N occurs in one operation: a x b (mod N). The main difference with a 
“normal” mod operation is that with the Montgomery operation no division is
involved; the only calculations are multiplications, additions and shifts. 
Divison operations are very expensive in terms of compute-power[7]. By 
avoiding division-operations and replacing them by multiplication-and shift-
operations Montgomery multiplications can be much faster then 
multiplications followed by an ordinary mod operation.

With the Montgomery multiplication the factors a and b are first brought into 
a "Montgomery form". This form consists of the number multiplied by a 
factor "R", and application of (mod N). More later on this factor "R".
So we get a' = a x R (mod N) and b' = b x R (mod N). Multiplication of
a' with b', then produces the intermediate result: T = a x R x b x R (mod N) = 
ab x R2 (mod N). By dividing T by R we get ab x R (mod N). The result is 
once again a number in the Montgomery form. In this way we can continue 
multiplication with other numbers that also are in the Montgomery form.
The division by R is made possible by adding the modulus to the intermediate
result T that many times as is needed to make this intermediate result T 
divisible by R (adding the modulus does not change the  modular result). The 
factor R is so determined that division by R may be carried out easily (in a 
decimal environment R can be set to a certain power of 10.  In a binary 
environment,  a power of 2 is taken). For R we take the smallest power of 2 
(or the smallest power of 10) that is greater than the modulus.  

Example:
Modulus N = 843
R = 1,000
T = intermediate result; T is limited to the modulus, but during calculations T
will temporarily have a content that exceeds the modulus.
In this example we want to make the intermediate result T divisible by R 
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(1,000), so for readability, we leave out  all the thousands of T. 
We want to find a factor m such that m times N, added to T,  produces an 
intermediate result T of ...000; so divisible by R.
We can calculate m by taking the last three digits of T and multiply this by a 
factor x. (In a formula: m = T (mod R)* x).  The factor x in this case is 293.
For example:
If T = ..001 then m = 001 * 293 and m*N = 246,999;  added to T gives ...000.
If T = ..123 then m = 123 * 293 = 36,039 and m*N = 30,380,877 added to T 
gives ...000. Etc.
For every value of T(mod R) there can be found a factor m, such that m*N 
added to T  produces a thousand-fold.
How do we get the factor x?
The factor x we can calculate with the extended Euclidean algorithm [8]. It is 
beyond the scope of this document to go deeper into this algorithm.
As input for this algorithm we use R and N. In our example, R = 1000 and    
N = 843. The result is x = 293. There always can be found a factor x 
provided that R and N has no common factors; so GCD (R, N) = 1.
It is easy to meet this requirement if R is a power of two and N is an odd 
number. If R is a power of 10 (as in this example) the requirement is met if N 
is odd and does not end on a five.

After the Montgomery multiplication the result is still in the Montgomery-
form: T × R (mod N). This must be brought back into normal form by 
dividing T by R (mod N). This is best done by multiplying the last 
intermediate result via a montgomery multiplication with a normal 1.

That division by R can also be done in stages; when R=10,000  you can also 
divide four times by 10. We'll see later on how that goes.
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Example
We want to calculate: a x b (mod N) ≡ c  with the the Montgomery method.
Number a = 1,234; number b = 5,678; the modulus N = 6,543.
First we bring both numbers in the Montgomery form. Because the numbers 
exist of four decimal figures, we use an "R" of 104; So we multiply both 
numbers by 104  and divide them by the modulus with the remainder being the
result as follows:
a' = 1,234 x 10,000 (mod 6,543) ≡ 6,445
b' = 5,678 x 10,000 (mod 6,543) ≡ 6,389
In the example we multiply 6,445 x 6,389 in the traditional way but insert 
after each line a "Montgomery" line to bring the result in a 10-fold. We could 
have chosen to add once a "Montgomery" line; thus bring the result directly 
to a 10,000-fold. We do not do that because it is more complex and does not 
lead to higher efficiency, as we will see later.
First we have to calculate factor x via the extended euclidean algorithm. As 
input for this calculation we take R = 10 and for N we take the last digit of 
the modulus; so N = 3.  The factor x is then 3. The last decimal digit of each 
intermediate result T is multiplied by x (mod 10) to get the factor m. Then m 
is multiplied by the modulus and added to the intermediate result.

          multiplicand  a':      6389    factor x = 3      
          multiplier    b':      6445 x          ↓
          modulus:             ------
 5 x 6389                       31945    m =(5 x 3 mod 10) = 5
          6543 x 5              32715
                                6466 
 4 x 6389                      25556
                               32022     m =(2 x 3 mod 10) = 6
          6543 x 6             39258 
                               7128 
 4 x 6389                     25556
                              32684      m =(4 x 3 mod 10) = 2 
          6543 x 2            13086
                              4577
 6 x 6389                    38334
                             42911       m =(1 x 3 mod 10) = 3 
          6543 x 3           19629          
                        c':  6254
The result c' is still in the Montgomery form: c' = 6,254. We can continue 
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Montgomery multiplications with this number if necessary. (Not now). To bring  
the number back into the “normal” form we have to multiply, still in the 
Montgomery way, the number 6,254  with a normal 1:  

          multiplicand              1    factor x  = 3
          multiplier      c':    6254 x         ↓  
          modulus:             ------
 4 x    1                           4    m =(4 x 3 mod 10) = 2 
          6543 x 2              13086
                                1309 
 5 x    1                          5
                                1314     m =(4 x 3 mod 10) = 2
          6543 x 2             13086    
                               1440       
 2 x    1                         2
                               1442      m =(2 x 3 mod 10) = 6 
          6543 x 6            39258 
                              4070
 6 x    1                        6
                              4076       m =(6 x 3 mod 10) = 8 
          6543 x 8           52344     
                         c:  5642

The result c = 5,642 and is exactly equal to the result of c = a x b (mod N) =
1,234 x 5,678 (mod  6,543) ≡ 5,642.
We see that we do really have to carry out a lot of extra work for a relatively 
simple modular multiplication. Later we will see that there are situations 
where this method just saves a lot of work. In the example above we have the
division by 10,000 executed in four steps  of 10. We could also do this in one 
step of 10,000. In that case, the number of “core multiplications” [9] remains 
the same, but the number of additions and shifts becomes less. However, the 
calculation of the factor m with the extended Euclidean algorithm is for 
numbers R = 10,000 and N = 6,543 much more complex than for numbers
R = 10 and N = 3. 
All in all, it is easier to keep the factors N and R small in the Montgomery 
calculation; thus in a decimal environment (such as in our example) set R on 
10 and set N to the last digit of the modulus. In a binary environment (a 
computer program) R becomes the value of  232 or 264. The N factor then gets 
the value of the last 32 or 64 bits of the modulus.
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Modular exponentiation

In number theory, formulas in the form a p (mod N) occur frequently. The 
base number (a) is usually a small number, but the exponent p can be very 
large (hundreds of decimal digits, or in binary form thousands of bits). It is 
clear that a x a x a x ... and that 10p times (where p is expressed in decimal 
digits) or 2p (where p is expressed in bits) multiplication by a is an 
impossible task. That would take too much time and would create too large a 
number, even if we have the smallest possible value  > 1 for a ; a = 2.
This happens when we wait with the (mod N) operation until the exponen-
tiation is completely finished.
We may also perform the (mod N) operation after each multiplication with a. 
The result remains the same as the result when we do the (mod N) operation 
at the very end.
We get ((a x a (mod N) x a (mod N))... etc. The size of the intermediate 
number remains limited to a maximum of N.
The impossibly large number (2p) of multiplications and (mod N) operations
remains a substantial limitation unless we can reduce this number. This can 
be done as follows: We can divide the exponent p in pieces that each are easy
to calculate. On those pieces we apply the (mod N). Thereafter we can 
multiply pieces together to obtain the final result; condition is that the 
number of pieces is much smaller than p.
We can write the exponent p as a binary number; each bit then represents a 
number which is a power of two. The bits set to 1 represents the values of 2i, 
for i = 0, 1, 2 .. for resp. bit 0, 1, 2 ...
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Binary ladders [10]

The algorithm that describes exponentiation with an exponent expressed as a 
binary number has got the name "binary ladder exponentiation".
Take the example of the formula a p, where we give the exponent p the value 
of 37, and p expressed as a binary number. We do this by dividing p in parts 
of powers of two, as follows: 37 = 32 + 4 + 1 = 25 + 22 + 20. So p, expressed
as a binary number:  = 32 + 4 + 1 = 37 = 1 0 0 1 0 1

Bitnumber:                 5   4   3   2   1   0  
                                25    24    23    22     21    20 

Value per bit:            32  16   8   4   2   1    
Binary number p            1   0   0   1   0   1
Value of p                32 + 0 + 0 + 4 + 0 + 1  = 37 
As exponent of a:          a32                a4           a1  = a37 
Where in the binary number there is a '0' bit, this bit has the
value a0 = 1. The total value of ap can now be obtained by 
multiplying all the terms of the binary field with each other. 
By continue squaring a and the subsequent results we can find 
the values of a1, a2, a4, a8, a16, a32. By multiplying the values 
of the '1' bits with each other in a separate resultfield, we 
can find the value of a37.

Two methods of binary ladder exponentiation are known: the first method is 
known as RightToLeftBinaryExponentiation. The second method offers some 
advantages over the first-mentioned method and has the name of 
LeftToRightBinaryExponentiation [11].

Left To Right Binary exponentiation

This method uses the exponent expressed as a binary number and starts at the
left most bit that is set to 1 (i.e., the bit having the greatest value) and goes to 
the right up to bit number 0.
In the example with exponent p = 37, we begin with the leftmost bit 
(bitnumber 5), and start the intermediate result T with the value a1.  We 
continue to the right with a bit that is set to 0 and execute the squaring of the  
value T; which now becomes a2.
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At the next bit again a squaring is performed; T = a 4. The next bit to the right
has a value of 1. We now perform not only a squaring (T = a8), but also a 
multiplication with a; so T = a 9. Then again a zero-bit: T = a18. The last 
(right most) bit is a 1 so we perform a squaring (T = a36), and multiply T 
again with a (T = A37).
When the exponent has a large value, there arises an impossibly large 
intermediate number T. But often the exponentiation is combined with 
modular arithmetic. By applying the modulus to the intermediate result T 
every time the value of T changes, this value can be kept limited to the value 
of the modulus.

Now we can combine the method of the binary ladder with the Montgomery 
multiplication, and so we get the “Montgomery exponentiation”. Each 
squaring of the intermediate result T now happens with the "square 
Montgomery multiplication". A nice application of the Montgomery 
exponentiation is in the calculation of Fermat's little theorem.
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Fermat's little theorem

Pierre de Fermat lived in early 17th century in France. He has done much 
research in the field of mathematics and number theory. He is best known for 
"Fermat's last theorem" but his "Fermat's little theorem" is much more 
important in practice[12]. This theorem is the basis of many cryptographic 
applications. This theorem reads:

If p is a prime number, and a is a positive integer > 1, and further have a and 
p no common divisors, then:

                                            a p-1 ≡ 1 (mod p)

In this document we call this theorem further the Fermat test or the little  
Fermat test. If the result is different from 1 (mod p), then p is composite. 
With this test we can distinguish numbers that are composite and numbers 
that may be prime. In cryptographic applications large prime numbers are 
required. They can be obtained by generating random numbers, and test these
numbers for primality. For this test we can use the Fermat test. If a number 
succeeds the little Fermat test, chances are that it is a prime number and 
additional testing may be executed to obtain a near certainty that the number 
is prime.

The little Fermat test can be performed just fine with the Montgomery 
exponentiation. This could be done as follows:

(In the following description, we assume a value of 2 for a. If a different 
value for a is chosen, then some of the improvements described herein are 
not applicable).

We want to test a number p with the Fermat test. We choose a = 2. For R we 
choose a power of two, namely a multiple of 32 (we assume a 32-bit 
processor). First we determine the size of p in number of significant bits. This
number is rounded up to a 32-fold and is called q; which then forms the 
exponent of 2 for R. Thus, R = 2 q
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For the Montgomery multiplication we will bring a into the Montgomery 
form: therefore a' = R x a (mod p) = 2q x 2 (mod p). We take the number of 
significant bits of p (that we have previously determined) but without the 
rounding up to a 32-fold. If that number is not a multiple of 32, we need to 
calculate the remainder by dividing the number (2q x 2) by p. This is a 
computer-intensive calculation.
If the number of significant bits of p indeed is a multiple of 32, the 
calculation can be much simpler, and goes as follows:
a' = 2 x (R - p). If a'  then is bigger than p, subtract p from a'. 

(For the calculation of prime numbers for cryptographic applications, it 
often occurs that the number of bits of the prime numbers is a multiple of 32).

Then we express the exponent p in binary form (first reduce p by one) and 
perform the Montgomery exponentiation: for each bit position of (p - 1), we 
execute a Montgomery square multiplication, beginning with intermediate 
result T = a', and starting from the second bit from the left (the bits having 
the highest values). For each "0" bit we execute the square Montgomery 
multiplication, and for every "1" bit we do the same and additionally multiply
T with a; so with two.
Multiplication by two is accomplished by shifting the intermediate result T 
one bit to the left. Then we calculate the modular result; we achieve this by 
subtracting p from T, as far as the intermediate result T > p.
We handle all the bits of (p - 1) down to bit 0. We finally have an 
intermediate result T that we only have to bring back from the Montgomery 
form to the normal form.
We do this by dividing T by R (mod p) =  dividing T by 2q (mod p).

But wait a moment; we have first a (two), (p-1) times multiplied by itself 
(mod p), and now we have to divide the endresult by 2q (mod p).
We can do better!

We can reduce the exponent with q, prior to the begin of the exponentiation.  
The exponent will then be (p - 1 - q).  Doiing so, the last step (bringing back 
the result from the Montgomery form to the normal form) is eliminated. 
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If the end result not is equal 1, then p is certainly not a prime number but p is
composite.  If the final result is now equal to 1, then p is probably prime.  
With further testing, we can increase the probability that p is a primenumber. 
We can, for example, again perform the Fermat test for p, but with a different
base a; for example, a = 3. The same calculation using the Montgomery 
squaring can then be carried out, but without the improvements, that belong 
to a = 2, such as the elimination of the final step to bring back the result to 
the normal form.

If the final result of a Fermat test for a composite number nevertheless ≡ 1, 
then we call such a number a pseudo-prime number for base a.
If a composite number with the Fermat test yields modular value ≡ 1, for any 
value of base a ,such a number is referred to as a Carmichael number.

In practice, the Fermat test (if successful) is followed by the Miller-Rabin 
test[13]. This test looks a bit like the Fermat test; it also made use of the 
Montgomery exponentiation and the test also uses a base a. If this test is 
successfully carried out ten times with different values for a, then the 
probability that the tested number is a prime number is greater than 
99.9999% . 
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